
¡Muchos no pueden resolverlo!
Muchos no pueden resolver éste balance por el método algebraico, yo te muestro la forma correcta de hacerlo, Resuelvo por el método algebraico la siguiente reacción:
Paso 1. Comprobar si la reacción química esta balanceada. Identificamos
todos los elementos que están en la reacción química y solo comprobamos
cuántas veces están en cada lado (reactivos y productos).
FeSO4 + HBrO + HCl → FeCl3 + H2SO4 + HBr + H2O
1 - Fe - 1
1 - S - 1
5 - O - 5
2 - H - 5
1 - Br - 1
1 - Cl - 3
NO está balanceada
Paso 2. Colocar coeficientes a cada componente de la
reacción química. Se sugiere usar los coeficientes
(A,B,C,D,E,F,G,H,I,...), cuantos sean necesarios.
AFeSO4 + BHBrO + CHCl → DFeCl3 + EH2SO4 + FHBr + GH2O
Paso 3. Elaborar una ecuación para cada elemento que hay
en la reacción química.
Fe : A = D ec.1
S : A = E ec.2
O : 4A + B = 4E + G ec.3
H : B + C = 2E + F +2G ec.4
Br: B = F ec.5
Cl: C = 3D ec.6
Paso 4. La letra que más se repite tendría el valor
de la unidad. Contamos cuantas veces esta cada letra en todas las
ecuaciones, y la mas repetida, le daremos el valor de uno.
Elegimos la letra B, entonces B = 1
Paso 5. Resolver las ecuaciones usando B = 1.
Recomiendo resolver la ecuaciones de la menos compleja a la mas
compleja;
De la ec.5 Sustituir B = 1, se obtiene "F"
B = F
(1) = F
F = 1
De la ec.3 Sustituimos B = 1 y A = E y despejar "G"
4A + B = 4E + G
4(E) + (1) = 4E + G
4E - 4E + 1 = G
G = 1
De la ec.4, "Sustituir B = 1, F = 1, G = 1 y despejar "C"
B + C = 2E + F +2G
(1) + C = 2E + (1) +2(1)
C = 2E + 3 - 1
C = 2E + 2 ec.7
Sustituir A = E en ec.6
C = 3D
C = 3E ec.8
Sustituir C = 3E en ec.7 y despejar "E"
C = 2E + 2
3E = 2E + 2
3E - 2E = 2
E = 2
Ya que A = E = D = 2
D = 2
A = 2
Resultados
A = 2
B = 1
C = 6
D = 2
E = 2
F = 1
G = 1
Paso 6. Sustituir los valores encontrados a cada
coeficiente y comprobar si la reacción esta balanceada;
2FeSO4 + 1HBrO + 6HCl → 2FeCl3 + 2H2SO4 + 1HBr + 1H2O
2 - Fe - 2
2 - S - 2
9 - O - 9
7 - H - 7
1 - Br - 1
6 - Cl - 6
Balanceada
Comenta y participa
Puntuación de éste post
⭐⭐⭐⭐⭐ (VOTOS: 2,134,567 | Rate)
Este sitio web es la más valorada por el usuario
No hay comentarios.
POR FAVOR ESCRIBE TU EMAIL EN LOS COMENTARIOS SI NOS ESCRIBES DE FORMA ANONIMA, DE ESTA MANERA PODRÉ DARTE UN MEJOR SERVICIO